US Army Deployed Railroad VBIED

In a number of previous posts I have discussed the use of railways to deliver VBIEDs. These have included:

a. The Provisional IRA attack in 1992 on the Border post using a road vehicle converted to run on rails carrying a large explosive charge.

b. The Soviet partisan attack using a rail vehicle as a VBIED  against Nazi German forces in Ukraine in 1943 (discussed with the one above).

b. The Boer and the British attacks using trains as delivery VBIEDs at Mafeking around 1900.

c. The Boer train VBIED attack on Okiep in 1902.

d.  The Mexican train IEDs 1912/1913.

I’ve now found an attack by the US military in 1944, using an IED with significant similarities to the IRA device of 1992.  It is mentioned in Ian Jones’s excellent book “Malice Aforethought” which anyone finding this blog interesting will find full of useful stuff. Highly recommended.

Here’s an excerpt about the incident:

As the US 6th Armored Division were advancing towards Brest they indulged in a little extra military activity. The 9th Armoured Infantry Battalion purchased a truck which they modified to run remotely along a railway line. The “Doodlebug”, as it was called, was loaded with 750 lbs of captured explosive and fitted with a crude improvised crush switch attached to the front bumper. It was set off one night under its own power at 25 mph to cross the thinly manned front line to intercept a nightly German re-supply train. At about 23:00 hours a terrific explosion was heard from about 3 miles behind the German lines. Unfortunately it never proved possible for the 9th Armored to check the results of their work.

I think the use of IEDs by all sides in WW2 was quite extensive, often forgotten. Mostly these were perhaps “defensive” in nature left behind by withdrawing forces, so this “offensive” ingenious VBIED is something of an exception.  The unusual nature of the device here also makes it difficult to categorise in terms of initiation. Victim operated? Timed? Command? Take your pick.

The Bath School Bombing – 1927

I’ve been doing this blog for some time, and vacuuming up data on historical bombing incidents for even longer. For some reason I thought I had done a piece on the Bath School Bombing some years ago – but turns out I hadn’t.

The tragedy of the Bath School Bombing is still with us today – so called “lone-wolf” terrorists with a grievance against society are still with us and that strange focus on schools still perplexes us all. The attack has some technical aspects that are interesting – the bomber emplacing a concealed large device over many weeks, the classic “return to the scene” and the use of a suicide car bomb – an early one.

Here’s the story. In 1927 Andrew Kehoe was a 55 year old single man living in the town of Bath, not far from Lansing in Michigan, USA. His mother had died when he was a child. His step-mother died in a strange accident with a stove and there are allegations that Kehoe or his father may have tampered with that stove.  So, he had a troubled childhood.   He had in earlier years killed a neighbour’s dog and also a horse that he owned, out of frustration with it. So – an angry man. He later qualified as an electrician which is probably pertinent.

In 1926 Kehoe lost a local election, and this appears to have been the cause of his subsequent acts. He started stockpiling explosives at that time, and also, it seems he undertook various actions to make his foreclosed farm less valuable to its eventual owners – he cut all the wire fencing, killed the trees and killed his grapevines. His wife, Nellie, suffered from tuberculosis and this further strained his finances. At the time of the attack she was chronically ill.

It seems Kehoe’s plan was to punish the community that rejected him – and that the school, (which he objected to paying taxes to support) was as good a representative of the community as he could find. Indeed he was employed by the school as a temporary electrician at one time, so knew the layout and access to the school buildings. Kehoe bought explosives from farm suppliers in small batches over many months and after the incident, police came to the conclusion that more dynamite was stolen by him from a bridge construction team some time earlier.

On May 16, his wife Nellie was discharged from hospital and some time later was murdered by Kehoe. He set a number of incendiary devices in the home and its outbuildings. These were initiated at 0845 on 18 May.   At about the same time, a timed explosive device detonated underneath the North wing of the school where the device had been hidden in the basement. The device was timed with an adapted alarm clock. 38 people were killed in the explosion – mostly children. Lessons had started 15 minutes earlier.

At about 0915, Kehoe arrived at the bomb site in his Ford truck. He summoned over the police chief, Superintendent Emory Huyck.  There was a brief struggle over a rifle and then the truck itself exploded, killing Kehoe, the Police Chief, a local man, and a child who had survived the first explosion. Another man died later from injuries caused. It appears that additional shrapnel had been piled on the back seat on top of a charge of dynamite. I think there is little doubt that this was in effect a suicide VBIED. Investigation at his home found the body of his wife and also two dead, hobbled horses , feet tied with wire, in a burnt-down stable.

During the follow up to rescue injured children another 500 pounds of explosive was found in the basement under the South wing of the school. It had failed to detonate, but was also attached to a timer set to switch at 0845.  Here’s photo of the recovered explosives.

After the events investigators found this sign attached to the Kehoe property gate, presumably attached there by Kehoe himself.

This sad tale suggests that lone bombers are not solely modern phenomena. Easy access to explosives enables such acts, and the technology is “easy”.  The strained mental health of potentially violent people remain issues today.

(All images public domain)

Two-Ton Boer Train VBIED 1902

I wrote recently about  trains or carriages on railways full of explosives sent towards each other by both sides (the British and the Boers) at the Siege of Mafeking in South Africa in 1899/1901, and I’ve just uncovered another from the following year.

In 1902 a small British Garrison at Okiep in the Northern Cape region was surrounded by Boer forces. On 1 May 1902, the Boer commandos launched a VBIED attack on Okiep, using the commandeered locomotive “Pioneer” of Concordia’s Namaqua United Copper Company to propel a an IED in the form of a wagon-load of dynamite into the besieged town.

Two tons of dynamite were loaded onto carriages behind the “Pioneer”. The train driver was Field Cornet Jan van Brummelen, and he was to be accompanied by two “Irish explosive experts”.  The men were to leap off the train before it arrived at the target. I’m pretty certain the device would be initiated by a timed burning fuze.

What followed is a little uncertain, as is often the case. Some reports suggest the protective defences at Okiep consisted of a barbed wire fence, which was erected across the railway line at Braakpits Junction, just north of the town. The points at the junction were rigged in some way to the fence, with the result that when the dynamite laden wagon breached the fence, it derailed at the points and spilled its load of dynamite on the ground, where it “burned out harmlessly without exploding”.  Other reports suggest that the local station master, Albert Gyngell, heroically turned the points to direct the train away from the town centre, and it subsequently derailed.  Here’s a pic of the train after the dynamite had burned away:

So, yet another in the long list of vehicle-borne IEDs that occurred (or in this case attempted) in history. The “remote delivery” mechanism for this vehicle-borne IED failed but the intent was clear.

I am uncovering many more IED attacks in this conflict than I had realised (thousands!) and will be blogging more about the comprehensive attacks the Boers made on the strategically crucial railways over a couple of years. There’s a fascinating story to be told – and it also involves the British Royal Engineers undertaken some remarkable bridging and other “counter-terrorist” or “counter-insurgent” responses to this comprehensive IED campaign against the key transport system in Such Africa. In some ways its presages there Russian sabotage campaign against the Nazi railway system in WW2 and the Iraqi insurgent campaign against US and UK road traffic in the early part of this century. Same techniques…

German WW2 use of ROVs to deliver explosives

In recent years various terrorist groups and others have used land, sea or air ROVs to deliver explosive payloads to targets.  As usual, people view these things as new and innovative threats. But as readers of this blog site will know,  that usually isn’t the case and I have more details here of some interesting early use of such devices from WW2, although they go much further back.  Some of these may be classed as “improvised” but others are clearly formally developed systems – but let’s not get hung up on definitions, because the concept is what is interesting   There are several aspects to this – one is the technology that is used, and another is the tactical employment. Many of the implementations of this concept were unsuccessful but the reasons for this are also interesting and indeed are being repeated in modern terrorist use of ROV technology.  I won’t go into that aspect in too much detail for obvious reasons.   So here goes with a few interesting  German “land based” example ROVs from WW2.

I’ve written before about the WW2 German “Goliath” remote controlled mine, a small tracked vehicle not too different in scale from modern EOD ROVs.   Following the fall of France in WW2, the Germans captured  a prototype French ROVs used for explosive charge delivery which seemed to inspire the development of the Goliath. This vehicle had been “hidden” in the River Seine, but the Germans got to hear of it and salvaged it for technical exploitation and reverse engineering. (Readers may recall a similar reverse engineering operation from a “purchased” French speed boat just before WW1, that I discussed in an earlier post).

 

Captured German Goliath ROVs after D-Day

While there has been some attention on the Goliath tracked vehicle, used to deliver demolition charges to targets, perhaps just as significant for us looking at history was the German Borgward B remote tracked vehicle. A contract was let by the Wehrmacht to the Carl Borgward engineering company in Bremen for 50 tracked vehicles in 1939. It’s not quite clear if the Borgward B was developed originally to deliver demolition charges or for other purposes such as towing mine clearance tools or as an ammunition carriers.  One suggestion is that during the German invasion of France, German engineers found an operational need and had been converting, in an improvised way, standard German tanks to operate remotely for certain tasks. The theory goes that as a result of after-action reports from this campaign the Borgward B was converted to fulfil this role. But it’s war and it’s a little confusing as to which came first, the chicken or the egg.    In any event,  Blaupunkt, the radio manufacturer developed a radio controlled system for the vehicle. These vehicles and their sub-systems were gradually improved in following years resulting in several “versions” as both their use and requirements changed.  A variety of vehicles were used as “control” vehicles as the war progressed. The radio control unit was very “modern” in appearance, using a joystick control and shared many of the features of the Linsen boats control systems.  The key features of the Borgward B was firstly that it could deliver a large charge, (typically 45o – 550kg), and secondly it could drop off the charge and retreat, thus in principle being a re-usable vehicle, unlike the smaller and disposable Goliath.

Here’s a pic of the Borgward B. The driver would drive the vehicle “normally” until it was a “tactical bound” away from the target, then he would get out and the vehicle would then be controlled by radio remotely. It looks like a fun  drive, (unless you are told to drive it to the Eastern Front).

 

The Borgward B wasn’t a huge success. it was unreliable and quite vulnerable to enemy fire.  Some reports suggest that some versions were equipped with smoke units to lay smoke screens or just to hide its own approach, but I’m not sure how it would then be controlled if surrounded by its own smoke screen. Perhaps this version was simply used to lay smoke screen and move laterally across the battlefield.  I have found a report that a single Borgward B was fitted with a TV camera as an observation vehicle during the fall of Berlin, perhaps a prototype but in the main the later use of these vehicles, in theory was to deliver and drop demolition charges.  The explosive charge, when dropped, had a timer initiation system that after a short period caused the charge to detonate.   The charge was released with the help of gravity after explosive retaining bolts were fired by the operator. I’m cautious about this and think it could have been a lever actuator.   It appears that there was an adjustable safety mechanism that armed the charge only after a certain distance (not time) had been covered, so for instance an operator would set the safety distance to 100m as he exited the vehicle, and the charge would only become “armed” after the vehicle had covered that distance. That’s logical, but I’m not sure how it was achieved.  These vehicles were less suited, of course, to defensive operations than offensive, where their utilisation against defended structures was optimised. I’m led to believe that over a thousand Borgward Bs were produced (compared to many thousand Goliath vehicles).

Here’s a great pic of the explosive charge after being “dropped off” by the vehicle. You can see it slides off the front plate where it is held in a “shoe”.

I think it’s worth thinking about the relative strengths and weaknesses of the Borgward B and the Goliath.  The Borgward B could be moved into its tactical launch position by one man, but the Goliath needed a small team of men.  Perhaps that’s why the Goliath was used in defensive positions like the beaches of Normandy, where it was prepositioned in shrapnel proof hides, (but it wasn’t particularly effective). The Borgward B was larger and therefore more vulnerable, but delivered a much bigger charge than the Goliath more suitable to taking on defensive positions. The Borgward B was more expensive but in theory was reusable. In the main the Borgward B was radio controlled and this offered some flexibility but also posed some reliability problems with the technology of the day. The cable system principally used by the Goliath was more reliable but vulnerable to shrapnel damage.

There was an attempt at a “middle ground” the NSU “Springer” ROV developed in 1943/1944. This was smaller than the Borgward B, bigger than the Goliath, but was driven into launch position by a driver. About 50 were made, I think. Here’s a picture showing its scale and size. They seem to have limited operational use. I don’t have a handle on their control system.

 

I think it’s fascinating that the Germans also used vehicles captured  from the British and French and convert to ROVs. It seems that the German engineers saw potential in particular from the British Bren Gun carrier and the Belgian “utility tractor” (a British built tracked vehicle made by Vickers, who also made a proportion of the British Bren carriers).

Here’s a pic of both in “normal use”

A Belgian Vickers Utility tractor

Bren Carrier

A number of both these vehicles were converted to be cable-controlled demolition vehicles, each with a 1.2 km cable.  That’s quite a distance, and one imagines that control of vehicle at such range was tricky, based on distant observation.  A total of 60 were sent to the Crimea in 1941.  The German Crimean campaign of 1941 is interesting because I think it was used as a testing ground for range of innovative German technologies.  I’m currently exploring the use of an advanced prototype German fuel air explosive weapon in this campaign, to clear bunkers and defence structures, and it appears that these converted Belgian and British ROVs were used against the same targets to deliver relatively large explosive charges. I have also seen reports of Borgward B vehicles used in the Crimea at this time.  It appears that the majority of the 60 vehicles were deployed with mixed results – some destroyed by mines before they reached the targets, some destroyed by enemy fire, some failed and some functioned as intended destroying Russian defensive positions.  I can find no specifics over the amount of explosives carried by either vehicle, nor any specifics on the control mechanisms fitted.   It appears that the ROVs were “controlled” from a “mother” command tank.  The Germans complained that there were no spare parts for the captured ROVs and recommended development of indigenous vehicles accordingly.  Other feedback included the suggestion that they would be better employed in flatter, desert conditions, such as North Africa, rather than the complex urban defence environments of Sebastopol, and indeed at least one Bren carrier, captured at El Alamein was so converted.   While this effort to convert enemy tracked vehicles to wire guided demolition use wasn’t really repeated , it’s clear it had some success and more importantly allowed the Germans to develop tactics and concepts of operation. . I think too, given the large amounts of “enemy” vehicles abandoned in Europe at Dunkirk and elsewhere, it made economic sense to utilise them, and the Germans had no qualms about recovering, and using, where possible, quite a range of enemy equipment.

This picture is, it is claimed, a captured Bren carrier (complete with German Cross) fitted with explosives being deployed on the Eastern front. The vehicle in the distance is Borgward B, I think, so it seems very likely.

I think it’s fair to say that the Goliath and the Borgward B ROVs were less effective than the Germans had hoped in normal operations on the Eastern and Western fronts. But it’s worth looking more closely at their deployment in the tight urban environments of cities. There are notable reports of Goliaths being deployed into the Warsaw Ghetto in responding to the Warsaw uprising in 1943.  If ever there was a historic precedent to the urban destruction seen in modern day Syria, the destruction of the ghetto by the German in 1943 is it.    Goliath were used to target buildings, and of course with only small arms the defenders had little defence against these ROVs, unlike formal military units.  I also see parallels with modern anti-tank missiles being used against defensive positions in Syria, of which we are seeing many. Yes these aren’t as fast as those missiles but the targets and tactics are quite similar.

Here’s the remains of a burnt out Borgward B vehicle, I think destroyed by fire after it had dropped off its charge in Kilińskiego Street in Warsaw in August 1944. The explosion reportedly killed 200 residents. The story of this attack is dramatic and a desperately sad tragedy. Essentially the vehicle had been captured by Polish troops as the Germans attempted to deploy it towards a road block and was being paraded around Warsaw by cheering locals. Someone pulled a lever which caused the deployable explosive charge to slide off, and as we know there was a timer started by this activation which the crowds did not understand.  The charge detonated shortly after.  There is more detail here if you are interested. It is possible of course that this was a “Trojan horse” attack, and a number of sources claim this but I suspect that it was just accidental.

Here’s some pics of the Goliath systems being deployed in Warsaw.

This is the effect of a Goliath on a building in Warsaw

I think the German forces of WW2 had, in their ROVs, some interesting tools for offensive operations, and for the built up environments of  Warsaw and heavily prepared defensive environments off Sebastopol they were of some use.  But for German defensive operations, they were less suited. Fundamental unreliability was a major issue, it seems, with all the systems they used, and that’s both in terms of motive power and in terms of the control systems. Modern technology perhaps allows for more reliance on the systems used by terrorists and others. In a battle there is perhaps more of an issue of unit cost – whereas modern ROVs are cheaper, and not being deployed, in general, in battle conditions are doubly attractive. Modern ROVs have more precise controls including reliable and usable video components that makes control easier and more attractive. More accurate control also leads to the potential to reduce charge size and so allow the vehicle to be smaller. I think this aspect of modern ROV weapons is not yet widely understood.  Improved batteries for electric vehicles also increases range.  The issue of logistic support is somewhat useful in understanding use of ROVs for delivering explosives and again modern terrorist use changes the impact of that logistic support and is maybe less crucial in terms of systems.  What is inescapable now and in the past is that ROVs offer an aggressor a safe way of delivering explosives, with the size of the explosive charge required having, of course, an impact on the vehicles that might be suitable.  The key difference today is that technology has improved reliability of control systems, and also that technology is broadly available.  However it is susceptible to technical counter-measures.  In particular radio control systems are now consumer items and not limited to government enterprises.  There are also some other parallels in terms of utilisation of captured weapons systems – and here I’m thinking of the way some Syrian jihadists have adapted captured armoured vehicles for suicide VBIEDS.

I recommend thinking in terms of tactical design – the systems outlined above all approached the target to a “control” point. From there the mode of control switches – and remote control takes over.  It’s worth, as with any attack system, particularly terrorist attack using radio or other command systems, having a hard think about what defines that “control point”.  What are the characteristics of that change over point that are needed, are chosen and utilised? Understanding those will help you develop some counter-measures. Modern day control points are perhaps less clearly defined than these WW2 examples, but the principle remains. Another thought that comes to mind is the importance of Technical Intelligence to the EOD operator. Put yourself on the shoes of an EOD tech 75 years ago – what would you want to know about the command and initiation system before you dealt with such an object? It may have no relevance today but as a “process” it’s useful to think through how you, a modern EOD operator, would deal with such things in a variety of situations – it’ll get your brain thinking, and that’s the best use for a brain.

Most of you will be aware of the command driven vehicles used by modern terrorist groups – various Jihadi ones, ETA, FARC and the IRA have all use such systems and others too are in the back pages of this blog site. But most importantly don’t be then thinking remotely driven vehicles delivering explosives are anything new – they are more than a century old and there are lessons to be learned still. From a historical perspective I’m intrigued by the German campaign in Crimea and the manner in which they used innovative weapons systems there – I’ll be digging further as it’s not a part of WW2 that I’m all that familiar with and instinct is telling there’s some interesting history. I have one wild reference to an ROV being used underground there which I’m trying to track down, and of course Russian defence of Sebastopol in the century before has been a subject of previous blogs. It’s strange how the patterns of explosive use over the centuries return to the same places. Sebastopol, Antwerp, London…

 

IED Innovation… or not

In May 1992 I was just starting my second tour in the EOD world. One of my jobs was to disseminate to my colleagues information on technically significant IED incidents, and the following was one of those incidents, and seemed very innovative. Given the ongoing discussion about “Backstop Borders”, or not, with the Irish Republic, it’s also quite pertinent.

In 1 May 1992, the British Army manned and ran a checkpoint ay Cloghoge on the Northern Ireland/Irish Republic border adjacent to the main road between Dublin and Belfast. This is about as far South as South Armagh goes, and in those days there was a very high level of threat from the Provisional IRA.  The main railway line also sat right there, and the small post, quite heavily protected, was right next to the road and the railway. It was normally manned, if I recall correctly, by about a dozen soldiers, providing “cover” and assistance for the police stopping the cross-border traffic at the check point. In Army terms the checkpoint was called “Romeo 1-5” (R15).

The Provisional IRA mounted a clever attack on the checkpoint. They stole a mechanical digger, and separately, a van. They loaded approximately 1000kg of home-made explosives in the van. Using the digger they made a makeshift ramp from the road, up to the railway lines, manoeuvred the van up the ramp then fitted the van with railway wheels. The digger was then used to lift the van, with its railways wheels, onto the the railway line (it wasn’t that busy a line and it was the middle of the night). All this happened out of sight of the checkpoint, at about 800m south of the border.

The van was fitted with a spool of cable, to initiate the device, and the cable fed to a terrorist who could see the checkpoint or someone who was in radio contact of someone who could see the target. At about 2 o’clock in the morning the van was set off in first gear, with no driver, towards the checkpoint paying out the spool of cable.

The Army sentry on the checkpoint, Fusilier Grundy, heard and then saw the approaching vehicle bomb and raised the alarm. Most of the occupants of the checkpoint took cover. Fusilier Grundy, correctly assuming this was a threat to his life and those of his team, opened fire in an attempt to disable the vehicle bomb. at 0205hrs the device was exploded next to the concrete sanger containing Grundy, killing him and throwing the ten ton protective sanger into the air. The remaining soldiers survived in a shelter, built to protect them if a vehicle bomb was delivered by road.  The replacement to this checkpoint was removed when the Good Friday Agreement came into effect.

I duly wrote up a technical report to the teams I supported (I was on mainland UK at the time), and highlighted that this innovative technique had never been used before.

Or so I thought…  But this is “Standingwellback” ain’t it, where I delve back in history. So check this out:

On 31 October 1943 the Germans were holding and guarding a railway bridge on the Ubort River in the Ukraine, West of Kiev. A Soviet partisan group led by an NKVD Major called Grabchak decided to use an “innovative” method to attack the strongly defended, strategic bridge. The area around the bridge was heavily mined, enclosed with barbed wire, there were several machine gun posts and a large garrison protecting it with mortars and other heavy weapons.

Twice a week the local German commandant travelled down the line to inspect the defences at the bridge from his base a few miles away. He invariably travelled to the bridge by a “special section car”, a small vehicle that was mounted on the railway line rails and used by railway officials for inspecting the line. As far as I can work out this was pretty much a road car fitted with railway wheels. Grabchack and his partsians, over a two week period, made a “replica” section car. The base of the vehicle was fitted with five large aircraft bombs. The fuzing arrangement was simple and ingenious. They knew the height of the cross bracings on the bridge. They fastened a long pole, upright between the bombs. Towards the base of the pole was a pivot point and at the base, a length of wire leading to the pin of a grenade fuze connected to the main charge explosively. So the concept was that the “section car” would be sent down the railway, and as it started to cross the bridge, the pole would hit the cross braces of the bridge, pulling the pin from the grenade fuze.   To add to the effect of the “expected” section car, two dummies were made, dressed in German uniforms, one an officer, the other a driver, and sat as realistically as possible in the car.

At 4pm, on 31 October 1943 the car was carefully placed on the rails about 1km from the bridge, just out of sight, near the village of Tepenitsa. It trundled down the line towards the bridge, and seeing it coming a guard opened a barrier and let it enter onto the actual bridge itself, presumably saluting smartly as it passed by. There, the device exploded, damaging the bridge severely.  Interestingly the German forces put out some propaganda that the device was a suicide bomb, driven all the way to the bridge on rails from Moscow, by “fanatical red kamikazes”. Apparently several more of these railway delivered IEDs were constructed and used but I can find no records, which given it was 1943 and the middle of a war full of sabotage operations is not surprising.

I have written a previous piece about trains loaded with explosives in Mexico in 1912, “loco-locos”, here.

So, the analysis of these incidents suggests the following:

1. There are several instances, historically, of trains or vehicles on train lines being the delivery method of getting explosives to targets. A variety of switching methods is possible. The technique can cause significant surprise, and such vehicles can carry sufficient explosives to overwhelm hardened targets.
2. Apparent innovation isn’t always new. Especially on standingwellback.
3. Border crossings are tricky, whichever way you look at it.

Close Me
Looking for Something?
Search:
Post Categories: