WW2 Thermobarics?

If this story is true, (and it may not be), it changes what we have thought about the origins of thermobaric weapons. It also could have changed the course of WW2 in one instant. Bear with me as I explain.

Thermobaric explosive weapons came to the general attention of the defence community in the 1990s.  They are still widely misunderstood. The explanation is also not helped by slightly odd nomenclature and descriptions. “Thermobaric” is one such descriptor. Sometimes “Fuel Air Explosives (FAE)” is used, sometimes “Vacuum bombs” even if the words have somewhat different meanings.  Sometimes thermobaric weapons are infantry weapons, engineer demolition weapons and at other times artillery weapons. Sometimes they are deployed by Chemical units.  All these lead to confusion, as do amateurs who also comment that where terrorists add gas cylinders to IEDs they are creating thermobaric or fuel air explosives, when generally that is not the case.  If you need to, you should read up elsewhere on thermobarics but please go beyond the rather simplified wikipedia efforts.

Here’s a very simple summary.  The ability of a fuel when mixed with air and initiated in the right mixture can cause explosions. This is well known and accidental things such as coal dust explosions in mines, and even dust in agricultural or industrial situations has been known to cause significant destruction.   It is possible to artificially, rather than accidentally, cause such explosions to occur, although it is not necessarily easy. Chucking gas cylinders on top of an IED pretty much doesn’t work whatever people may tell you.  The oxidisation of the fuel in the explosion and the progress of a blast wave through the fuel and air is very complex and affected by a large number of variables.  What is important is the effect of such an explosion. Traditionally military weapons, at least in the West, have concentrated on attempting to reach as high a peak pressure for the blast wave as possible, on the assumption that the higher the peak pressure the higher the damage to the target.  Thermobaric weapons however don’t follow that logic. On a graph of pressure over time, the energy imparted by the explosion is represented by “the area under the curve”. Thermobaric explosions give a lower peak pressure but the duration of the pressure is much longer, so there is much more energy involved.  The long pressure pulse also has horribly strange effects in terms reflection, reinforcement and effects on targets, structures, and the human body.  Long pulses knock buildings over very effectively so thermobaric weapons were seen as useful against  structures  and some of the “peculiar effects” that themobarics have in some environments made them “good” at killing people and even against armoured vehicles. That’s about all I’m going to say on that aspect of subject for now, do your own research.  But they make dramatically different weapons with “new” destructive capabilities and should not be underestimated.

Some sweeping statements now, which I’m then going to hit with relatively new information:

Thermobaric weapons first came to my attention in the 1990s, like most people, I think.  The story was the Russia had invested in some new technology and weapons like the shoulder launched RPO-A were the first example. Translation often (in those days and still today) classed these as “flame weapons” which confused the issue but all of a sudden people seemed to realise their effect against targets and the West sat up.  More and more thermobaric/FAE weapons have been produced over the years, including RPG variants, and artillery variants. Perhaps the most dramatic variant is the TOS-1 “Buratino”, a Russian armoured multi rocket launcher that has the ability to attack a large area (such as towns, villages, armour start lines, forming up points etc) with a barrage of thermobaric weapons.  It has an apparently remarkable effect.  Google it. The weapons have been used in Chechnya and indeed the Middle East (probably) and now they are on everyone’s radar.  The technology was presumed to have been Russian, and relatively recent. But if you did some research you might have come across a passing reference to an unsuccessful attempt by Nazi Germany to use thermobaric weapons to attacks formations of Allied bombers, with a missile system called “Taifun” – Germany for Typhoon.

A few days ago an old colleague, Paul H., pointed me in the direction of two books. The books are interviews with German soldiers who were in France around the time of D-Day in 1944. As I understand it the interviews were conducted in the Mid 1950s by Dieter Eckhertz and the books have been edited by his grandson and finally published in the last couple of years.   WW2 history, like most war history, is written by the victors, and the books are fascinating because they give the perspective of the losing side, from apparent primary sources. The Germans, not surprisingly, often have a different take. On their own, the books are fascinating. There are two volumes, both available on Amazon :

“D Day Through German Eyes – by Holger Eckhertz.

Link https://www.amazon.co.uk/gp/product/B071NTXK2H/ref=series_rw_dp_sw

Kindle version are cheap.

One chapter in Book One has a fascinating chapter regarding the operational use of Goliath RCVs by the Germans against tanks on the beaches of Normandy, and links to my earlier blog post about these early RCVs here.

But it is at the end of the second book that really made me sit up. You really need to read the chapter yourself and I don’t wish to take away from the authors right to be rewarded for publishing it. So here only in startling outline is what is said.:

  • Germany had an apparently large effort developing thermobaric weapons in WW2.
  • The interviewee, K L Bergmann,was a specialist weapons officer with thermobaric weapons. He eventually died in the early 1980s.
  • The design evolved and was used at various stages of WW2 along the development line, that perhaps were very crude to start (not much more than “flame weapons”  and got increasingly sophisticated.)
  • A version of the Taifun weapon (Taifun A) was used very effectively, allegedly, against Russian Bunker structures in Sebastopol wit dramatic effect.
  • A Taifun system of some kind was allegedly used against the Warsaw Ghetto.
  • The interview clearly implies that the weapon was “tested” against captured Russian soldiers as human targets to examine the effect on the human body.
  • By the summer of 1944, the system had evolved in to Taifun B.  It was mounted as an MLRS system on a number of tracked vehicles (Stuka zu Fuss type vehicles) Interestingly (and very importantly) the interviewee who had taken a detailed part in the development program describes the contents of the Taifun B system as containing a burster charge with a fill of kersoene like liquid with the addition of carbon and aluminium particles. I think that’s a pretty credible thermobaric material, in outline. A second missile system fired after the main charge caused initiation of the dispersed cloud, but eventually the initiation was integral by the summer of 1944.
  • Taifun B was deployed to Northern France with the intent it be used against any port seized by the Allies as the focus of the invasion.  The intent was to simply destroy the port with a barrage from Taifun B and the officer in command appears to have had no doubt it would have that dramatic effect.
  • The fact the Allies didn’t land at a port such as Dieppe or Calais for the D-Day invasion and instead landed on beaches surprised the German command and meant the Taifun-B system wasn’t deployed quickly. There is some discussion by the interviewee about the effect the system would have had on the Mulberry harbours.
  • Eventually the Taifun B system was deployed to counter the expected US breakout from Normandy, under General Bradley, Operation Cobra. Taifun was deployed to the correct place, and the very densely packed tanks of General Bradle in its form up location was set up as the target. However just before the fire order was given the Taifun B vehicles were hit by counter-battery fire (maybe accidentaly as part of a rolling barage), and the launch of the missiles was prevented.
  • Bergmann believed that the use of his thermobaric wepaons would have destroyed Operation Cobra, and could have changed the course of the war. Also he believed that the effective operational use would have convinced the German command to use it again and again.

My assessments:

  • The word “Taifun” seems to have been used to describe a number of weapons systems that were part of the Thermobaric program. They evolved over the war.
  • I note that some commentators have dismissed some of the interviews in the books as fiction because they don’t match “established facts”. To me the interviews seem authentic but I’m no professional historian.  I again point that usually it is the victors who write the history and it doesn’t surprise me there are anomalies from these German interviews.  I find the description of the chemical content of the Taifun B system convincing as is the effect of artillery on a loaded Taifun B Stuka zu Fuss vehicle and its rockets. The description of a thermobaric effect is also convincing, as is the evolution of the system, which is logical. Elsewhere separate interviews such as the operator of the Goliath RCVs ring true to me.
  • I need to research more on possible Taifun usage against Russian bunkers in Sebastopol in the 1942 offensive. This is slightly hampered because the Germans used “Taifun” to describe a very wide strategic military operation in Russia.
  • Ditto Taifun use against the Warsaw Ghetto in 1943 needs more research.  There is an odd discussion here:  https://forum.axishistory.com/viewtopic.php?t=106078   which describes it as a demolition device using a fuel air explosive to destroy tunnel systems.
  • I think anti-aircraft Taifun systems may have been an entirely different system and may or may not have been thermobaric. https://en.wikipedia.org/wiki/Taifun_(rocket)  Again the use of the word Taifun may be confusing matters
  • Research is hampered by a number of things. a. Secrecy of the original project.  b. Confusion over the nature of “flame weapons” and thermobaric weapons, with historians and perhaps the military conflating the two, perhaps understandably. c. The  use of Taifun to describe a much broader German invasion of Russia and d. the fact that Taifun thermobaric weapons evolved over a period of time. e. A lot of amateurs on the web who while clearly understanding nothing about thermobarics feel able to offer detailed comment.
  • To me there is a striking similarity between the Taifun B concept allegedly deployed in France in 1944 and the TOS-1 system of todays’s Russia. I think earlier Taifun A, was possibly simply an engineer demolition tool using a fuel gas pumped into tunnels and defensive structures. Taifun B appears to have been much more advanced system delivered by rockets. Early version of this rocket delivered system required a second barrage to initiate the cloud, but by the summer of 1944 this had been integrated.

This is still somewhat of a mystery, and I’m not yet fully certain it is true – some have raised doubts about the veracity of the author. Let me know what you think.

 

Here’s a pic of a possible launch vehicle showing large calibre rockets (added Sep 2020)

A peculiar Heavy Water journey

This week is the anniversary of Operation Gunnerside, a fantastic SOE operation to destroy the Norwegian Heavy Water plant at Vermork. The wider story of the destruction of Vermork is told here and is well worth a read.  I would also recommend reading this if you have a few minutes, an excellent contextual document with also some fascinating detail.

The anniversary reminded me that a few years ago I blogged about the Earl of Suffolk GC, the eccentric English aristocrat, adventurer and experimental bomb disposal expert who played a key role in “rescuing” a batch of heavy water from France as the Nazis invaded.  In retracing some of the research for that I found a nice little thread, looking at the journey that the Heavy Water took. It is a tale of secret operations, spies, buccaneering adventurers waving pistols, and peculiar persuasive pragmatism, worthy of a heist movie. So here it is:

  • In early 1940 a group of clever French Physicists (Joliot (husband and wife), von Halban and Kowarski) had recognised the potential of heavy water to perform as a moderator in a nuclear fission reaction. The only place in the world where this heavy water (deuterium oxide) was being produced in any quantity was in Norway by Norsk Hydro. Norsk Hydro was effectively controlled financially by the Banque de Paris et des Pays Bas. At the outbreak of WW2 in 1939 almost the entire world stock of any significance was 185kg, held by the Norwegians.  They had already limited the Germans to buying only a few litres a year, and the French had intelligence that the Nazis were seeking much more. Vitally, the French were able to see the importance of heavy water as a weapon component. Interestingly the Norwegians were not aware of that and made an assessment that the German interest had a use in biological research.
  • With the political situation deteriorating and with excellent forethought the French authorities moved to secure this 185kg, using a combination of bank pressure and the pragmatic, persuasive skills of Lieutenant Jacques Allier of the Deuxieme Bureau. I think the reasons were twofold – to secure it for themselves and also to prevent acquisition by the Nazis.  Allier travelled to Norway under a false passport in his Mother’s maiden name, via Stockholm.  The French went to some trouble in preparation designing aluminium metal canisters that were specifically built that could be disguised in suitcases. These were made in Norway. They had to be made from metal without any trace of boron or cadmium and some other trace elements which might cause the heavy water useless.
  • There are some indications that the Nazis were aware of the presence of Allier in Norway and had alerted local agents, even providing them with the name that Allier was travelling under.
  • In a series of meetings Allier persuaded Norsk Hydro to part with their entire stock – 185kg – of heavy water. Nordsk Hydro provided the stuff at no cost despite Allier being authorised to pay a significant sum – Norsk Hydro were left in no doubt as to the military imperative of the material to France.  The material was poured into the 26 five litre special aluminium containers. In two batches then, the Heavy Water started their journey, on 9 March 1940, both ending up by seperate routes in Oslo, where they were stored in a French safe house which happened to be next door to a German Abwehr owned office.
  • The next day, 10 March 1940 a complex operation took place with Allier and a colleague booked with a cargo on a plane to Amsterdam, but conducted a secret “switch” actually boarding a plane to Scotland. Just as well because the Amsterdam plane was intercepted by the Luftwaffe and forced to land in Hamburg – clearly the German knew something was up.
  • As the plane carrying Allier and the first batch of Heavy Water left the coastline of Norway it too was tailed by another plane – but the adventurous Allier briefed his pilot that they were secret agents and persuaded him to “lose” its tail in the clouds. According to one report the plane climbed so high that Allier passed out due to lack of oxygen.  Eventually it landed near Montrose in Scotland.
  • There is a suggestion that the operation to fly out to Scotland was assisted by MI6 in Oslo. One report suggests that the MI6 agent, Frank Foley, helped load the plane at Oslo airport. Indeed when the plane landed (another followed the following day with the remaining heavy water), there were no customs or immigration procedures applied.
  • After a night in an Edinburgh hotel with the 26 canisters alongside the beds, the French agents, led by Allier, caught the train to London with the canisters stowed in the overhead luggage racks. As we will see this wasn’t their last journey on British train luggage racks…
  • From London Allier took the canisters to France by train and ferry and eventually storing them in a cellar in the College de France in Paris. He was given a receipt, on 16 March 1940.
  • Two months later on 16 May 1940, the Nazis invaded France, and the Heavy Water was loaded in a truck and taken 200 miles south to the vaults of a bank in Clermont Ferrand.
  • Soon after the cans were moved, oddly to a women’s prison in Monts Dore, and then to the Central Prison in Riom. It is sort of peculiar that prisons were used on this journey (and not for the last time).
  •  Now, Allier reappeared on the scene, with instructions to take th e heavy water to London, via Bordeaux, ahead of the German advance.on 17 June 1940, Allier arrived at Riom prison, but the prison governor was reluctant to release the cans. Allier drew his revolver and the governor was “persuaded”.  Some prisoners helped load the cans onto Allier’s waiting vehicle. The vehicle with Allier and some scientists aboard arrived at a requisitioned school in Bordeaux at midnight. There they received instructions to take the cargo and load it on a coal ship, the “Broompark” in Bordeaux docks. Arriving there in in the early hours of 18 June 1940 they were met on the gangplank by a strange character – Moustached, short sleeved, arms covered with tattoos, two revolvers in shoulder-holsters and swinging a riding crop. It was “Jack Howard”, the Earl of Suffolk and Berkshire. Acting as an unpaid “science attache” he was coordinating the Broompark’s journey, loaded with Heavy Water, diamonds, physicists and machine tools. Interestingly, the MI6 agent who had been in Oslo two months earlier, Frank Foley, was also at the docks. Later that same day, 18 June 1940 the Broompark steamed out of Bordeaux. The 26 cans had been lashed to a raft on the deck in the hope of saving them if the ship was sunk – clearly Howard knew the importance of the cans, and had probably been briefed by Frank Foley, who had left to head south over the Pyrenees to Spain.  I have picked up that Howard may have stashed a special part of his cargo ashore on the coast somewhere not far from Bordeaux, but it is pretty vague and its not clear at all. one report says that whatever it was was “collected” in a secret naval operation sometime later. Could be a spoof, maybe with the help of Foley.
  • On 21 June 1940 the Broompark docked in Falmouth England. It had been spotted by a German aircraft at one point in the Bay of Biscay but no action had been taken against it. So the heavy water was back in England, and once more was loaded onto a train, the express, to London Paddington, with Jack Howard guarding it, unshaven, fierce and with his twin shoulder-holstered pistols on clear display.
  • Arriving in Londonon 22 June 1940, the Heavy Water was again sentenced to imprisonment, this time in a cell Wormwood Scrubs a legendary London prison.
  • Some time later the Heavy Water was transferred, of all places, to Windsor Castle, home of the Royal Family, were, under the watchful eye of the King’s librarian, Owen Morshead, it was stored with the Crown jewels. I kid you not.
  • It is possible that in the next two years the Heavy Water was moved to Cambridge were British research into fission was ongoing, but I can find no specific records.
  • The Heavy Water is next recorded as being delivered to the Anglo-Canadian research effort in Montreal, Canada on 1 May 1943. I do not know its mode of transport across the Atlantic. In 1944 the Heavy Water was moved to the Chalk River Experimental Plant on the Ottawa River.
  • In 1946, the French government then requested “Could France have its Heavy Water back please?” This clearly caused something of a panic. A note dated 30 September 1946 noted that the “remaining” material was stored in container “T-7” which was 99.5% pure with respect to Deuterium. It was agreed to ship 100ml back to France which accordingly occurred, being flown by Trans-Canada airlines to Paris. So a small quantity returned “home” to the French.
  • In 1947 Drum T-7 containing the Heavy Water was sent to Trail in British Columbia for re-processing. At this point it appears to have been mixed with other Heavy Water, losing its “French” identity.
  • In 1948 the French, supported by the British, requested return of the material or equivalent from other sources. After some discussion 32.5 pounds of heavy water was shipped to France, via Harwell in the UK in a stainless steel drum.

This may be, at the end of the day, simply a logistics story, but I feel it is a true adventure, featuring bravery, human character and fortitude, and it is a story which may have changed the world.

For more on Jacques Allier, see here.  Frank Foley was another remarkable man, and a little of his life is detailed here.  He helped 10,000 Jews escape Nazi Germany, was responsible for interrogating Rudolf Hess, and played a key role in the Double Cross deception operation using double agents to persuade the Nazis that the Allies would invade the Pas de Calais rather than Normandy.  Some more on ” Charles Howard” is here.

More railway IED attacks from history

I have built an exceptional trove of IED attacks on railways, which I’ll blog further about in coming days and weeks. These include:

1. A fascinating and unsolved IED attack on a railway line near Watford, in 1880, using an unusual booby trap switch.

2. A further campaign against the Ottoman train system in Salonika in the early 1900s.  So the Ottoman train system was subject to IED attacks in Salonika (now Greece) in the 1900s, in Arabia in WW1 (Lawrence etc) and in the Dardanelles campaign, WW1 (from submarines).

3. Attacks on the railway system in the Arab revolt in Palestine, pre WW2.  Of interest the British forces in Palestine applied an unusual,and in today’s terms, immoral technique for preventing booby trapped rail IEDs -see the photo below, which shows an improvised armoured rail car behind two Arab hostages.

Also from Palestine, but this immediately post WW2, and prior to the establishment of Israel. the railway lines were attacked extensively by the Irgun/Stern gang.  These groups posed a significant IED problem for the British Forces, which I’ll write about in coming days – a largely forgotten story, with some challenging EOD situations and challenging IEDs.  This device below uses a bell push which is depressed by a bracket fastened to a sleeper.  I found this image in an official British Royal Engineer publication from 1946 describing Irgun devices.   Note that the device contained a hidden anti-handling switch in addition to the bell push. (Details of that not shown, for security reasons).

 

The US Navy Sub that destroyed a train, with an IED

I’ve written a few blogs in the past about IEDs placed under train tracks, that the weight of the train triggers. As a reminder:

  • In the US Civil War, in 1864, the Union Army designed an IED (a “rail torpedo”) that initiated when a train ran over a rail , pressing down on a gun trigger that caused the device to function.
  • Another IED design was used in the Franco-Prussian War, in 1870, with the rail pressing on an artillery fuse to initiate the charge.
  • In the Boer War, in 1901, Jack Hindon used devices under railways to attack British trains, using an upturned Martini Henry gun lock, with the rail bending under weight to press on the trigger which initiated an explosive charge.
  • In WW1, ordnance specialist “Bimbashi” Garland designed and deployed similar devices, again using an upturned gun trigger, and used by Lawrence of Arabia to great effect against the Ottoman Turk trains in Arabia.

I’m glad to say I’ve now found a similar device, with a great story, from WW2.   The use of the IED was effectively the ONLY US ground combat operation on the Japanese homeland in the entire war. (Noting that the attack took place in southern Sakhalin, which was considered a Japanese home island at the time) .

Late in the war, US Navy submarines began to patrol very aggressively close to the Japanese mainland. One of the subs was the USS Barb, skippered by Commander Eugene Fluckley. The patrol in question started on 8 June 1945 and involved a variety of attacks including, unusually, firing rockets at Japanese targets from the deck of the surfaced submarine. After noting considerable Japanese railway activity on a railway line near the shore, a plan was developed to blow up a train by putting a team ashore at Karafuto from the submarine.

An improvised device was carefully designed.  As far as I can make out it was as follows:

  • The main charge was a 55lb super-Torpex “scuttling charge” held in reserve on the submarine for scuttling the sub in an emergency. The blasting caps used must have been the ones meant to be used with this charge.
  • Power was provided by two dry cell batteries.
  • The switch was a microswitch removed from some electronic equipment on board.
  • The batteries and circuitry were mounted inside an oil-can to protect it from the elements. Included was a “test circuit” to ensure safety.

The crew made careful calculations to estimate the deflection of the railway line  (7/10″, which was adjusted on the operation itself to 1/4″) and made an improvised gauge to help the setting of the switch. They also made improvised shovels to help bury the charge under the rails. An eight man team was put ashore in inflatable boats and made their way (with one or two adventures) towards the track.

The charge was successfully initiated by a 16 carriage train and all the saboteur group escaped unharmed. Commder Fluckley ended the war as the most decorated officer in the Navy.

Intriguingly Similar Designs of Improvised Munitions Over Decades

One of the most notable improvised weapons in the last 15 years has perhaps been the “IRAM”.  This “Improvised Rocket Assisted Munition” appeared in 2004 in Iraq, using the rocket motor of a 107mm rocket with a “bolted on” over-calibre warhead. This is a relatively short-range munition with more target effect than a standard 107mm, but quite difficult to range and target.  The IRAM munition came in various designs. Here’s one variant:


IRAMs 2004

Such munitions appear to be being used now by Syrian government forces and others in Syria. See this report from the excellent Brown Moses/Bellingcat website from 2013:   http://brown-moses.blogspot.co.uk/2013/11/is-syrian-military-using-another-type.html.  Sometimes the users seem to have not fired these from 107mm tubes (with the overcalibre warhead “left out the front”) but from tubes with a greater diameter. See: http://brown-moses.blogspot.co.uk/2013/11/the-syrian-national-defence-forces-most.html .  In this variant the rocket motor is “under-calibre”, in effect.

When the IRAM appeared in 2004 it was commonly thought to be a new type of improvised munition. But as readers of this blog might already suspect, it wasn’t new at all – the concept was used in the early part of the Vietnam war. Here’s the image of Viet Cong overcaliber warhead that was fitted to a 107mm rocket, just as they are today. The image provider suggests that the warhead was cast iron, but the welds in what is probably rolled mild steel are clearly present.  These early Viet Cong “IRAMs” were fitted with what were described as WW2 Japanese impact fuzes.

 


Viet Cong over-calibre warhead for 107mm rocket


Japanese WW2 impact fuze on Viet Cong warhead

Now here’s another interesting thing – probably coincidental. The design of the Viet Cong over-calibre warhead is remarkably similar to a Provisional IRA mortar bomb warhead. This image is from a de-fuzed Mk 12 mortar bomb taken in 1991.  The IRA warhead was of course not on a rocket but on a mortar, but the design structure of the mild steel welded warhead looks remarkably similar to the Viet Cong warhead, does it not and is of an almost identical construction. The Mk 12 mortar of course is a horizontally fired anti-armour weapon with a copper cone liner, but the outer form of the warhead is remarkably similar.

 


PIRA Mk 12 Mortar bomb with identical shaped warhead

Keen readers of this blog will recall too that Irish revolutionaries were firing rockets horizontally at the British Military as early as 1803, using a rocket designed in 1696. 

Close Me
Looking for Something?
Search:
Post Categories: